Maternal Inflammation & Autism: References

  1. Jiang TT, Chaturvedi V, Ertelt JM, Kinder JM, Clark DR, Valent AM, Xin L, Way
    SS. Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. J Immunol. 2014 Jun 1;192(11):4949-56.
  2. Jonakait GM: The effects of maternal inflammation on neuronal development: possible mechanisms. Int J Dev Neurosci 2007, 25:415-425.
  3. Ashwood P, Wills S, Van de Water J: The immune response in autism: a new frontier for autism research. J Leukoc Biol 2006, 80:1-15.
  4. Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med. 2011; 17:389–394.
  5. Atladóttir HO, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010 Dec; 40(12):1423-30.
  6. Ponzio NM, Servatius R, Beck K, Marzouk A, Kreider T: Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Ann N Y Acad Sci 2007, 1107:118-128.
  7. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN: The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 2006, 11:47-55.
  8. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH: Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007, 27:10695-10702.
  9. Kayisli, U.A., Mahutte, N.G., Arici, A., 2002. Uterine Chemokines in Reproductive Physiology and Pathology. Am. J. Reprod. Immunol. 47 (4), 213–221.
  10. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009 Oct 15; 64(1):61-78.
  11. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007; 8:221–232.
  12. Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun. 2012 Jan; 26(1):170-6.
  13. Goines P, Van de Water J. 2010. The immune system's role in the biology of autism. Curr Opin Neurol 23:111–117.
  14. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014 Feb; 19(2):259-64.
  15. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, Perrin M, Gorman JM, Susser ES. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004 May; 161(5):889-95.
  16. Saito S. Cytokine network at the feto-maternal interface. J Reprod Immunol. 2000 Jul; 47(2):87-103. Review.
  17. Sargent IL, Borzychowski AM, Redman CW (2006) NK cells and human pregnancy–an inflammatory view. Trends Immunol 27:399–404.
  18. Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, Syn HC. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996; 174:1433–40.
  19. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997; 177:19–26.
  20. Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, Han TR. Fetal exposure to an intraamniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000; 182:675–81.
  21. Samuelsson AM, Jennische E, Hansson HA, Holmäng A: Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 2006, 290:R1345-R1356.
  22. Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011 May;69(5 Pt 2):26R-33R.
  23. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010; 167:261–280.
  24. Conductier, G., Blondeau, N., Guyon, A., Nahon, J.-L., Rovère, C., 2010. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J. Neuroimmunol. 224 (1–2), 93–100.
  25. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014 Feb; 19(2):259-64.
  26. Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ: Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 2003, 112:e420.
  27. Mayer JB, Schiefer I, Kneip R. [Metabolic anomalies of diabetic pregnant women as a cause of encephalopathy in the child]. Munch Med Wochenschr. 1967 Nov 17; 109(46):2405-7.
  28. Brimberg L, Sadiq A, Gregersen PK, Diamond B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol Psychiatry. 2013 Nov; 18(11):1171-7.
  29. Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology. 2008; 29:226–231.
  30. Lee JY, Huerta PT, Zhang J, Kowal C, Bertini E, Volpe BT et al. Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat Med 2009; 15: 91–96.
  31. Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry 2008; 64: 583–588.
  32. Dalton, P., Deacon, R., Blamire, A., Pike, M., McKinlay, I., Stein, J., Styles, P., Vincent, A., 2003. Maternal neuronal antibodies associated with autism and a language disorder. Ann. Neurol. 53, 533–537.
  33. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol 2013; 31: 345–385.
  34. Camacho J, Jones K, Miller E, Ariza J, Noctor S, Van de Water J, Martínez-Cerdeño V. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav Brain Res. 2014 Jun 1; 266:46-51.
  35. Martin LA, Ashwood P, Braunschweig D, Cabanlit M, van de Water J, Amaral DG. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun. 2008; 22:806–816.
  36. Nielsen HS, Witvliet MD, Steffensen R, Haasnoot GW, Goulmy E, Christiansen OB, Claas F. The presence of HLA-antibodies in recurrent miscarriage patients is associated with a reduced chance of a live birth. J Reprod Immunol. 2010 Dec; 87(1-2):67-73.
  37. Nielsen, H.S., Steffensen, R., Varming, K., van Halteren, A.G., Spierings, E., Ryder, L.P., Goulmy, E., Christiansen, O.B., 2009. Association of HY restricting HLA class II alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Hum. Mol. Genet. 18 (9), 1684–1691.
  38. Christiansen OB, Steffensen R, Nielsen HS. Anti-HY responses in pregnancy disorders. Am J Reprod Immunol. 2011 Jul; 66 Suppl 1:93-100.
  39. Christiansen OB, Kolte AM, Dahl M, Larsen EC, Steffensen R, Nielsen HS, Hviid TV. Maternal homozygocity for a 14 base pair insertion in exon 8 of the HLA-G gene and carriage of HLA class II alleles restricting HY immunity predispose to unexplained secondary recurrent miscarriage and low birth weight in children born to these patients. Hum Immunol. 2012 Jul; 73(7):699-705.
  40. Christiansen OB, Steffensen R, Nielsen HS. The impact of anti-HY responses on outcome in current and subsequent pregnancies of patients with recurrent pregnancy losses. J Reprod Immunol. 2010 May; 85(1):9-14.
  41. Burd I, Bentz AI, Chai J, Gonzalez J, Monnerie H, Le Roux PD, Cohen AS, Yudkoff M, Elovitz MA. Inflammation-induced preterm birth alters neuronal morphology in the mouse fetal brain. J Neurosci Res. 2010; 88:1872–81.
  42. Burd I, Breen K, Friedman A, Chai J, Elovitz MA. Magnesium sulfate reduces inflammation associated brain injury in fetal mice. Am J Obstet Gynecol. 2010; 202:292 e1–9.
  43. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. Am J Pathol. 2003; 163:2103–11.
  44. Elovitz MA, Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res. 2006; 59:50–5.
  45. Girard S, Tremblay L, Lepage M, Sébire G. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J Immunol. 2010 Apr 1; 184(7):3997-4005.
  46. Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011 May; 25(4):604-15.
  47. Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, Pollak DD. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry. 2014 Feb 18; 4:e363.
  48. Meyer U. Prenatal poly (i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry. 2014 Feb 15; 75(4):307-15.
  49. Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., et al., 2006. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752– 4762.
  50. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci. 2011 Oct; 29(6):663-71.
  51. Missault S, Van den Eynde K, Vanden Berghe W, Fransen E, Weeren A, Timmermans JP, Kumar-Singh S, Dedeurwaerdere S. The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model. Brain Behav Immun. 2014 Jun 26. pii: S0889-1591(14)00178-0.
  52. Goines P, Van de Water J. 2010. The immune system's role in the biology of autism. Curr Opin Neurol 23:111–117.
  53. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol 2004;103:546–50.
  54. Banks WA. The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun. 2014 Aug 27. pii: S0889 1591(14)00424-3.
  55. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun. 2009; 23:64–74.
  56. Rossi CC, van de Water J, Rogers SJ, Amaral DG. Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain Behav Immun 2011. 25:1123–1135.
  57. Mazur-Kolecka B, Cohen IL, Gonzalez M, Jenkins EC, Kaczmarski W, Brown WT, Flory M, Frackowiak J. Autoantibodies against neuronal progenitors in sera from children with autism. Brain Dev. 2014 Apr; 36(4):322-9.children with autism. Brain Dev. 2014 Apr; 36 (4):322-9.
  58. Rout UK, Mungan NK, Dhossche DM. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur Child Adolesc Psychiatry. 2012 Mar; 21(3):141-7.
  59. Connolly, A. M. et al. Serum autoantibodies to brain in Landau–Kleffner variant, autism, and other neurologic disorders. J. Pediatr. 134, 607–613 (1999).
  60. Singh, V. K. et al. Antibodies to myelin basic protein in children with autistic behavior. Brain Behav. Immun.1993. 7, 97–103.
  61. Dantzer R, Kelley KW. Autistic children: a neuroimmune perspective. Brain Behav Immun. 2008 Aug; 22(6):804-5.
  62. Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 11: 459–470, 423.
  63. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009 Feb 15; 207(1-2):111-6.
  64. Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation. PLoS One. 2011 Feb 10;6(2):e16638.
  65. Nardone S, Sams DS, Reuveni E, Getselter D, Oron O, Karpuj M, Elliott E. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry. 2014 Sep 2; 4:e433.
  66. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57:67–81.
  67. Abdallah MW, Larsen N, Mortensen EL, Atladóttir HÓ, Nørgaard-Pedersen B, Bonefeld-Jørgensen EC, Grove J, Hougaard DM. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish Newborn Screening Biobank. J Neuroimmunol. 2012. Nov 15;252(1-2):75-82.
  68. Singh VK, Rivas WH. Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett. 2004 Jan 23; 355(1-2):53-6.
  69. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011 Jan; 25(1):40-5.
  70. Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012 Apr;67(4):287-94.
  71. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997 Jul; 42(1):1-8.
  72. Bassan H, Kidron D, Bassan M, Rotstein M, Kariv N, Giladi E, Davidson A, Gozes I, Harel S. The effects of vascular intrauterine growth retardation on cortical astrocytes. J Matern Fetal Neonatal Med. 2010 Jul; 23(7):595-600.
  73. Leviton A, Paneth N: White matter damage in preterm newborns–an epidemiologic perspective. Early Hum Dev 1990; 24:1–22.
  74. Hutton LC, Castillo-Melendez M, Smythe GA, Walker DW. Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation. Am J Obstet Gynecol. 2008 Jan;198(1):117.e1-11.
  75. Yan E, Castillo-Meléndez M, Nicholls T, Hirst J, Walker D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res. 2004 May; 55(5):855-63.
  76. Li Q, Cheung C, Wei R, Cheung V, Hui ES, You Y, Wong P, Chua SE, McAlonan GM, Wu EX. Voxel-based analysis of postnatal white matter microstructure in mice exposed to immune challenge in early or late pregnancy. Neuroimage. 2010 Aug 1; 52(1):1-8.
  77. Zielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS, Fletcher PT, Zygmunt KM, Travers BG, Lange N, Alexander AL, Bigler ED, Lainhart JE. Longitudinal changes in cortical thickness in autism and typical development.Brain. 2014 Jun; 137(Pt 6):1799-812.
  78. Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL, Bigler ED, Lange N, Lainhart JE. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011 Dec; 134(Pt 12):3742-54.

<< Back to Article

Send Us an Email

Open Up the Discussion & Share Your Thoughts

Your answers won’t be published and will be used to help us improve our website.

Do you have an autistic child?

Have you been diagnosed with an autoimmune disease or do you think you might be at risk?

Did you learn how maternal health during pregnancy can affect fetal brain development and be involved in ASD in children?


Answers & Education

View Videos


News & Updates

Read Posts

Join Our Discussion Forum

Need more information? Join the discussion today!

What You Need to Know